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Nonlinear Rock Mechanics
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Tel: +30 28210 37690, Fax: +30 28210 37891, e-mail: exadakty@mred.tuc.gr,
http://minelab.mred.tuc.gr.

Abstract
Rock mechanics is a rapidly evolving scientific discipline that is concerned with the devel-
opment of experimental and theoretical tools to study and predict the behavior of intact (or
damaged) and discontinuous (fractured) rocks under the influence of chemo-thermo-poro-
mechanical effects under static or dynamic conditions. Nonlinearity is inherent in many rock
mechanical problems. Some indicative examples are briefly listed herein. In physical nonlinear-
ity, few, if any, rocks are truly “elastic” and even fewer are “linear” or “Hookean.” Natural or
stress-induced nonlinear directional response (anisotropy) is possible. In addition, coupled ther-
mal, fluid flow, and mechanical effects or processes may give considerable nonlinearities in the
response of porous rocks. In geometric nonlinearity, many structures undergo very large defor-
mations in normal or in damaged conditions (e.g., buildings and other manmade structures after
major earthquakes (See chapter 4)). In constraints, nonlinearity, contact between deformable
rocks (e.g., contact of lips of faults), or rock structure may occur such that the common surface
is unknown. A central point of any rock mechanical problem is the constitutive description of
the rock. In this chapter the basic ingredients of a nonlinear constitutive mechanical theory for
rocks based on experimental evidence is outlined and tested by exploiting triaxial compression
experiments of a sandstone.

Keywords: Damage, fracture mechanics, hypoelasticity, Mohr–Coulomb, nonlinearity,
plasticity, rocks, sandstone, triaxial compression

1. Introduction

Rocks are granular, porous, heterogeneous, anisotropic natural materials formed un-
der certain geological processes (i.e., sedimentary, magmatic, or metamorphic) dur-
ing a rather extended (geological) time scale (Figures 5.1a,b), hence their behavior is
more complex as compared to concretes, ceramics, metals, and other manmade mate-
rials. Rocks are composed of a vast variety of minerals and occur in an almost infinite
range of conditions, from crystalline solids to aggregations of independent particles.
In general, rocks exhibit elasticity, plasticity, damage (Van den Abeele and Windels,
this volume), cracking, elastic hysteresis, and memory (Pascualini, this volume;
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Fig. 5.1. Typical granular microstructure (fabric) of rocks observed with an optical microscope: (a) het-
erogeneous Berea sandstone with pores and microcracks (Guyer and Johnson, 1999) and (b) low porosity
homogeneous Gioia marble rock microstructure with twins in calcite crystals (courtesy of P. Tiano).
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Fig. 5.2. Typical axial stress–axial strain curve of a rock in uniaxial tension–compression (Dionysos
marble) (courtesy of I. Vardoulakis).

TenCate et al., this volume), dilatancy, creep, pressure, and rate dependency, nonequi-
librium nonlinear dynamics (Johnson, this volume; TenCate et al., this volume), size
effects, and anisotropy, among others. Another important property of geologic mate-
rials that is attributed to the presence of healed or open microcracks, pore topology,
and other defects such as soft inclusions, is that their uniaxial tensile strength is much
smaller (one order of magnitude) than their uniaxial compressive strength (Figure 5.2).
This is a clear manifestation of “brittleness.” The convention of positive tension and
elongation is assumed unless stated otherwise.

Due to all these phenomena that accompany rock mechanical behavior, modern
rock mechanics should rely upon all the up-to-date developments of the fundamental
theories of continuum and discontinuum mechanics, elasticity, strength of materials,
damage mechanics, plasticity, and fracture mechanics in order to present robust models
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for rocks subjected to static or to dynamic loads. The linking of all these theories under
the umbrella of a unique theory capable of describing the rock mechanical behavior at
all scales (i.e., in the range of 1e 6 m to 1e 4 m) and boundary conditions encountered
in practice, is one of the fascinating challenges of the future.

In the following paragraphs a brief account of nonlinearities accompanying rock
behavior under static mechanical loads is given, and an example of calibration of
a new nonlinear mechanical model on a series of uniaxial and triaxial compression
experimental data of a heterogeneous sandstone is illustrated.

2. Elasticity and Plasticity of Rocks

The study of the elasticity of rocks is the first step towards the construction of robust
models. For easy reference a few definitions and basic properties of elastic, hyper-,
and hypoelastic constitutive equations are mentioned in this section [for an extensive
review see (Truesdell and Noll, 1965; Chen nad Han, 1988; Vardoulakis and Sulem,
1995)]. A material is called elastic if: (a) it possesses only one ground state, that is, a
state that is undeformed and is also stress-free, and if (b) the stress σi j is a function of

the deformation gradient or strain ε
(el)
kl , that is,

σi j = Ti j

(
ε
(el)
kl

)
, i, j, k, l = 1, 2, 3, (5.1)

wherein superscript (el) indicates elastic strains and the usual notation and rules for
tensors are followed (e.g., Frederick and Chang, 1972). The elastic material defined
by (5.1) is called a “Cauchy elastic material.” From this equation we observe that in
closed stress paths in stress space elastic materials are characterized by zero residual
strain. In the small-strain linear Cauchy elasticity in isothermal or adiabatic conditions,
the stress–strain relationship may be stated in the following way,

σi j = Ci jklε
(el)
kl , Ci jkl = constants (5.2)

More restrictive is the definition of the hyperelastic or Green elastic materials. In
hyperelasticity we postulate a strain energy density function

w(el) = w(el)(ε
(el)
i j ) (5.3)

such that,

σi j = ∂w(el)

∂ε
(el)
i j

. (5.4)

The above relationship means that the stress tensor is derived from the gradient of
the strain potential function, or alternatively that the stress is normal to the surface
w(el) = const . Thus we conclude that equation Eq. (5.2) for isotropic elastic materials
follows from the form (5.4) for hyperelastic materials. The converse is not generally
true. If the material is hyperelastic along a closed strain path the total specific work
done by the stresses is null. This is not generally true for (Cauchy) elastic materials.
However, in closed stress paths in stress space both elastic materials and hyperelastic
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materials are characterized by zero residual strain. We observe that both the constitu-
tive equations of isotropic elastic materials 5.3 and for isotropic hyperelastic materials
(5.6) lead through formal material time-differentiation to equations of the rate form

σ̇i j = C (el)
i jkl ε̇

(el)
kl , (5.5)

where the dot indicates differentiation w.r.t. time. Truesdell and Noll (1965) defined a
class of materials, which they call “hypoelastic materials”, that obey rate constitutive
equations like the one above, which are linear in ε̇

(el)
i j , with the additional restriction

that the corresponding fourth-order constitutive tensor is an isotropic tensor function
of the stress. Hypoelastic constitutive models are used to describe the mechanical be-
havior of a class of materials in which the state of stress depends on the current state
of strain as well as on the stress path followed to reach that state. Hypoelasticity equa-
tions are derived from hyperelasticity. In general, however, hypoelastic constitutive
equations are neither integrable to a finite form (5.1) nor connected to a strain energy
function through a constitutive equation of the form of (5.4). Thus, hypoelastic equa-
tions will lead in general to residual strain, if integrated along closed stress paths, and
to violations of the second law of thermodynamics if integrated along closed strain
paths.

In elastoplastic constitutive equations it is often assumed that the background elas-
ticity is a Hooke-hypoelasticity; that is,

C (el)
i jkl = G

{
δikδ jl + δilδ jk + 2ν

1 − 2ν
δi jδkl

}
(5.6)

with constant secant shear modulus G and constant secant Poisson’s ratio ν, where δik

is the Kronecker delta. The next modeling step is based on the study of rock plasticity
and strength. Incremental plasticity theory is based on a few fundamental postulates.
Plasticity models are written as rate-independent models or as rate-dependent models.
A rate-independent model is one in which the constitutive response does not depend
on the rate of deformation: the response of many rocks at low temperatures relative
to their melting temperature and at low strain rates is effectively rate independent. In
a rate-dependent model the response does depend on the rate at which the material
is strained. Examples of such models are the simple “creep” models and the rate-
dependent plasticity model that is used to describe the behavior of rocks at higher
strain rates. Because these models have similar forms, their numerical treatment is
based on the same technique. A basic assumption of elastic–plastic models is that the
deformation can be divided into an elastic part and an inelastic (plastic) part. This
decomposition can be used directly to formulate the plasticity model. Historically, an
additive strain rate decomposition is employed (Hill, 1950),

ε̇i j = ε̇
(el)
i j + ε̇

(pl)
i j , (5.7)

where the superscript pl indicates plastic strains. For rate-independent materials we
may use instead of the rate of deformation the incremental deformation; that is,

�εi j = ε̇i j . (5.8)
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The elastic part of the response is assumed to be derivable from an elastic model
presented previously. The cohesional, frictional, and dilatational properties of rocks
up to failure may be modeled within the frame of elastoplasticity theory with strain-
hardening yield surface and nonassociative flow rule. The yield surface F that defines
the limit to this region of purely elastic response and plastic potential Q that defines
the plastic part of strain may be expressed as follows,

F = F
(
σi j , ψ

)
, Q = Q

(
σi j , ψ

)
, (5.9)

in which ψ denotes a hardening parameter, that is, a measure of plastic deformation.
The hardening parameter or parameters are state variables that are introduced to allow
the models to describe some of the complexity of the inelastic response of real ma-
terials. In the simplest plasticity model ( perfect plasticity) the yield surface acts as a
limit surface and there are no hardening parameters at all: no part of the model evolves
during the deformation. Complex plasticity models usually include a large number of
hardening parameters.

Plastic strain rates are generated when the state of stress lies on the yield surface and
if loading of that yield surface is taking place, that is to say, the following “consistency
criterion” is satisfied,

F = 0, Ḟ > 0, and ψ̇ > 0. (5.10)

When the material is flowing inelastically the inelastic part of the deformation is
defined by the flow rule, which we can write in incremental form as follows,1

�ε
(pl)
i j = �ψ

∂ Q

∂σi j
, ψ ≥ 0. (5.11)

The rate form of the flow rule is essential to incremental plasticity theory, because
it allows the history dependence of the response to be modeled. The plastic potential
and the yield function may be identical, that is, Q = F , only if the measured dilatation
and strength responses of rock are identical. Such models are called associated flow
plasticity models. Associated flow models are useful for materials in which disloca-
tion motion provides the fundamental mechanisms of plastic flow when there are no
sudden changes in the direction of the plastic strain rate at a point. They are generally
not accurate for materials in which the inelastic deformation is primarily caused by
frictional mechanisms as in the case for geomaterials. For a plastic potential that is an
isotropic function of the stress tensor, Eq. (5.11) describes a co-axial flow rule; that is,
the principal axes of plastic strain rate coincide with the principal axes of stress.

The feature that distinguishes the inelastic behavior of nonmetallic porous materials,
such as concrete, rocks, and soils, from that of metals is the occurrence of plastic vol-
ume changes. Metals undergo no change in volume as a result of plastic deformation.
Rocks, on the other hand, may either dilate (increase in volume) or compact (decrease
in volume) as a result of plastic deformation. From the macroscopic point of view and

1 The inequality ψ ≥ 0 is essential in plasticity and defines the irreversible character of plastic
deformations.
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for granular media under shear, irreversible shear strains g(pl) and irreversible vol-
ume changes v(pl) are linked together. This is usually expressed by the well-known
phenomenological dilatancy constraint (Vardoulakis and Sulem, 1995)

v̇ (pl) = d
(

g(pl)
)

ġ(pl), v̇ (pl) = ε̇
(pl)
kk ; (5.12)

d
(
g(pl)

)
is called the “mobilized dilatancy coefficient.” That is to say, there is great

class of deformations where there is no need to treat irreversible volume changes sep-
arately from irreversible shear deformations. Within the frame of nonassociative flow
theory of plasticity one may chose the deviatoric plastic strain ġ(pl) as the hardening
parameter as proposed by Kachanov (1974), which can be interpreted as the average
interparticle slip. This strain invariant may be expressed as follows,

ġ(pl) =
√

2ė(pl)
i j ė(pl)

j i , ė(pl)
j i = ε̇

(pl)
j i − ε̇

(pl)
kk δi j/3. (5.13)

Thus, one may set
�ψ ≡ �g(pl). (5.14)

3. Experimental Evidence

In this work we employ a database of uniaxial and triaxial compression experiments on
Serena (or Firenzuola) sandstone intact cylindrical specimens with diameter D = 5 cm
and height H = 10 cm that were performed at SINTEF (Norway). The mineralogical
setup and basic physical properties of this type of sandstone are displayed in Table 5.1.
In all the tests carried out in the frame of this work a certain number of unloading–
reloading cycles were performed in order to study the elasticity of the test specimens.
During its test the axial force (F), the engineering axial strain (εa), and the engineering
radial (or lateral) strain (εr ) were recorded by LVDTs and stored on a computer. The
axial stress (σa) was computed from the formula

σa = F

π D2/4
. (5.15)

For the cylindrical samples subjected to axial loading and under small strains the vol-
umetric strain (εv) was computed from the formula

εv = (2εr + εa), (5.16)

where εr and εa are the axial and radial strains, respectively.
As illustrated in Figure 5.3 the tested rock exhibits strong stress dependence of the

elastic (unloading–reloading) curves, which are characterized by appreciable nonlin-
earity. Thus, the simple secant-modulus calibration procedure by virtue of relation
(5.6) with rather linear unloading–reloading curves cannot be readily applied. Var-
doulakis et al. (1998) developed a hypoelastic model for marble that accounts for
stress dependency of the Young’s modulus but assumes a constant Poisson ratio of
the marble. In a next section a new hypoelastic model based on damage mechanics
is developed that considers as variables a secant elastic modulus and Poisson ratio of
intact rocks.
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Fig. 5.3. Axial stress versus axial, radial, and volumetric strains for Serena sandstone specimen SS-TC-0
at zero confining stress (courtesy of E. Papamihos)

Table 5.1. Mineralogical and petrophysical properties of the tested Serena sandstone

Mineral or physical property Serena (Firenzuola) sandstone

Calcite [%] 21 – 8
Dolomite [%] 7 – 0
Quartz [%] 32 – 36
Potassium Feldspar [%] 7
Plagioclase [%] 13 – 15
Phylosilicates [%] 20 – 34
Total porosity [%] 9.76
Bulk density [Mg

/
m3] 2.57

In the sequel, the observed mechanical behavior of sandstone in Uniaxial Com-
pression (UC) and Triaxial Compression (TC) is described with simple mathematical
relations. Note that in this section we deviate momentarily from the assumed stress
sign convention and we assume compressive stresses as positive. First, by considering
only the loading branch of the UC data, the path of a rock sample to failure can be fol-
lowed by plotting the measured axial and radial strains versus the applied axial stress.
For example, the graphs of axial stress versus axial strain and radial strain versus axial
strain for the uniaxial compression test SS-TC-0 are displayed in the Figures 5.4a and
b, respectively. We remark here that the high unconfined compressive strength exhib-
ited by this sandstone is due to the high content of quartz (see Table 1). The data taken
from primary loading loops are fitted by polynomials of the form

σa = a1x + a2x2 + a3x3 + · · · ,

1000 · εr = b1x + b2x2 + b3x3 + · · · ,

x = 1000 · εa .

(5.17)
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Fig. 5.4. Loading branches of (a) axial stress–axial strain and (b) radial strain–axial strain curves of Serena
sandstone specimen SS-TC-0 in UC and fitted polynomial curves.

The nonlinearity of sandstone is manifested by the dependence of the tangent modulus
of deformability and lateral strain factor on the applied stress. In fact, differentiating
formulae (5.17) with respect to x or εa we obtain the following expression for the
tangent moduli,

Et = ∂σa

∂εa
= a1 + 2a2x + 3a3x2 + · · · ,

νt = − ∂εr

∂εa
= −b1 − 2b2x − 3b3x2 + · · · .

(5.18)

In the case of test SS-TC-0 six unloading–reloading cycles were performed before the
peak stress at failure in order to infer its elastic properties. From the graphs displayed
in Figures 5.5a,b it may be observed that the unloading–reloading curves correspond-
ing to σa − ε

(el)
a and to ε

(el)
r − ε

(el)
a display nonlinearity and hysteresis. Neglecting

hysteresis for the sake of simplicity, each of these loops is best-fitted by second-degree
polynomials.

The recorded peak stresses during the four uniaxial and triaxial compression tests
are plotted in Figure 5.6a in the form of Mohr circles; that is,

σ = σ1 + σ3

2
+ σ1 − σ3

2
cos 2θ, τ = σ1 − σ3

2
sin 2θ, (5.19)

wherein σ1, σ3 denote the principal stresses at failure (i.e., axial and confining, re-
spectively) and θ is the angle subtended between the horizontal line and the outward
normal to the plane in which the normal and shear stresses (σ, τ ), respectively, act.
According to the celebrated Mohr–Coulomb (MC) linear failure criterion (Jaeger and
Cook, 1976),

|τ | = c + tan ϕσ, (5.20)
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Fig. 5.5. Unloading–reloading loops for Serena sandstone in UC: (a) σa − ε
(el)
a , (b) ε

(el)
r − ε

(el)
a .

where the cohesion c and the internal friction angle ϕ of Serena sandstone are derived
by passing a straight line that is tangent to all Mohr circles (e.g., Figure 5.6a). The
values of these properties have been found to be c = 23.5 MPa and ϕ = 53◦. The pho-
tos in Figure 5.6b illustrate the failure modes exhibited by three sandstone specimens
subjected to different confining pressures. The high friction angle of the sandstone is
manifested with the low angle subtended between the vertical axis and the shear crack
exhibited by the specimens at the moment of failure2 (Figure 5.6b).

2 As is well known this angle denoted by the symbol β is given by β = π/4 − ϕ/2.
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Fig. 5.6. (a) Mohr circles and fitted linear Mohr–Coulomb failure envelope; (b) photos of sandstone cylin-
drical specimens broken in uniaxial and triaxial compression tests (courtesy of E. Papamihos).
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Fig. 5.7. Representative Elementary Volume (REV) of damaged rock.

4. Calibration of a Nonlinear Model on Experimental Data

4.1 A Hypoelastic-Damage Model for Sandstone

In this section a new hypoelastic theory for intact rocks is developed to account for this
stress dependency of both elastic moduli of Serena sandstone found in the experiments.

Elasticity of intact rocks is determined by the elastic stiffness of the uncracked rock
and the geometry (density and orientation) of microcracks. It may be assumed that the
geometry of microcracks—which may be approximated in any plane by the area of
intersections of cracks with that plane—can be modeled through a continuum variable
at the mesoscale (i.e., grain scale). In order to manipulate a dimensionless quantity the
crack area δAD is scaled with the size of the area of the Representative Elementary
Volume (RVE). This size is of primary importance in the definition of a continuous
variable in the sense of continuum mechanics. This continuum damage variable is
similar to the plastic strain of classical plasticity that at a given point represents the
average of many grain slips.

If the area δA with outward unit normal n j of the RVE with position vector xi of
Figure 5.7 is loaded by a force δFi the usual apparent traction vector σi = σi j n j is
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σi = lim
δA→S

δFi

δA
, i = 1, 2, 3, (5.21)

where S is the representative area of the intact rock. The value of the dimensionless
damage quantity D(ni , xi ) may be defined as follows,

D = δAD

δA
. (5.22)

At this point we may introduce an effective traction vector σ
(e)
i that is related to the

surface that effectively resists the load, namely,

σ
(e)
i = lim

δA→S

δFi

δA − δAD
, i = 1, 2, 3. (5.23)

From relations (5.21)–(5.23) it follows that

σ
(e)
i = σi

1 − D
, i = 1, 2, 3. (5.24)

According to the above definitions the elastic deformation of the intact rock can be
described with the following relations.

• The relation σ
(e)
i j − ε

(el)
i j which is obtained from elasticity

• The relation σi − σ
(e)
i which is obtained by employing the concept of damage

(Lemaitre, 1992).

It is convenient to decompose the stress tensor σi j into deviatoric and hydrostatic
parts as follows,

σi j = si j + pδi j , (5.25)

wherein si j denotes the stress deviator and p = σkk/3 is the mean pressure. Further-
more, we introduce the stress invariants

I1σ = σkk, J2s = 1

2
si j s ji , (5.26)

wherein I1σ is the first invariant of the spherical stress tensor and J2s is the second
invariant of the deviatoric stress tensor. The generalization of damage theory in three
dimensions may be performed by assuming that microcracks and pores reduce3 the
apparent distortional and hydrostatic intensities of the stress tensor according to the
relations

I1σ = (1 − Ds) · I (e)
1σ , T = (1 − Dc) · T (e), (5.27)

3 It may be noted here that a general theory must allow for both enhancement and degradation of
material properties due to mechanical loads. The former case corresponds to negative damage
measures and describes pore and microcrack closure (healing) due to hydrostatic pressure and
the latter corresponds to positive damage measures and describes microcrack opening and prop-
agation. Both degradation and enhancement of the properties of a solid may be embraced under
the term “material divagation” that is used to describe processes where the mechanical properties
of a material change in time or wander from the values that characterize the material in a refer-
ence configuration. In general, divagation can result from any thermal, mechanical, chemical, or
electrical process experienced by the material.
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where T = √
J2s denotes the deviatoric shearing stress intensity. In the above rela-

tions it is assumed that the scalar damage variables Ds, Dc are the spherical (hydrosta-
tic) and distortional intensities of the damage tensor Di j , respectively. From relations
(5.25) and (5.27) the apparent versus the effective stress tensor relationship may be
obtained:

σi j = (1 − Dc) · σ
(e)
i j + 1

3
· (Dc − Ds) · δi j · σ

(e)
kk . (5.28)

Next, we recall the finite-elasticity equations for the volumetric and deviatoric
strains

ε
(el)
kk = p

Ks
; e(el)

i j = si j

2Gs
(5.29)

and

e(el)
i j = ε

(el)
i j − 1

3
δi jε

(el)
kk , (5.30)

where Ks is the secant bulk modulus and Gs is the secant shear modulus of the rock
material that are related to the secant Young modulus Es and Poisson ratio νs through
the formulae

Ks = Es

3(1 − 2νs)
, Gs = Es

2(1 + νs)
. (5.31)

Alternatively, we may also find the relations,

νs = 3Ks − 2Gs

2(3Ks + Gs)
, Es = 9 Ks Gs

3Ks + Gs
. (5.32)

Equations (5.27) and (5.29) lead to the following relations,

Ks = K0 (1 − Ds) , Gs = G0 (1 − Dc) . (5.33)

From (5.29) and (5.30) one may derive rate-type elasticity (hypoelasticity) equations
that are obtained through formal material time differentiation

ṗ = Ks ε̇
(el)
kk + p

K̇s

Ks
; ṡi j = 2Gsė(el)

kk + si j
Ġs

Gs
, (5.34)

where e(el)
i j denotes the elastic strain deviator, and ε

(el)
kk is the elastic volumetric strain.

By recourse to formal differentiation of formulae (5.38)

K̇s

Ks
= − Ḋs

1 − Ds
; Ġs

Gs
= − Ḋc

1 − Dc
(5.35)

and relations (5.28) we extract the relation between the apparent stress and the elastic
strain increments

σ̇i j = 2Gs ε̇
(el)
i j +

(
Ks − 2

3
Gs

)
δi j ε̇

(el)
kk − si j

Ḋc

1 − Dc
− p δi j

Ḋs

1 − Ds
. (5.36)

The above incremental expression may be set into the equivalent compact form

σ̇i j = C (el)
i jkl ε̇

(el)
kl , (5.37)

where C (el)
i jkl is the “tangent elastic stiffness matrix” that according to the above damage

model is now an anisotropic fourth rank tensor.
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4.2 A Plasticity Model for Sandstone

Herein it is assumed that the “isotropic hardening rule” of rocks in compression is
the same as that in tension. That is, past the initial yield state, friction is mobilized
and increases as a function of plastic shear strain until it reaches saturation at some
peak value. This friction-hardening phase is consequently described as an isotropic
hardening phase as shown in Figure 5.8 [state i (initial yield) to state f (failure)] in
which q is the strength of the uncracked rock matter (it is called tensile limit of the
material).

The yield curves for this model are linear with their slopes to be steeper than the
initial i yield curve. This is expected because the mean orientation of the active cracks
f (g(pl)) is changing as the rock proceeds from initial yield to failure according to the
rough model of Figure 5.9. Thus f

(
g(pl)

)
represents a stress orientation coefficient in

terms of fracture mechanics or a friction coefficient in terms of MC yield criterion.
For the calibration of the MC yield surface based on the UC test results:

F = √
J2s

[
sin

(
αso + π

3

)
+ 1√

3
cos

(
αso + π

3

)
sin ϕm

]

−
(

q − 1

3
I1σ

)
sin ϕm = 0,

(5.38)
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1

(f)
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1
f

f

f

Ci

Cf

q p

Fig. 5.8. Motion of the yield surface in (T –p) stress space. (i– f ) isotropic friction hardening phase with
constant q .

n atan(f)

σ

σ

Fig. 5.9. Physical meaning of the stress inclination parameter f , that is, the angle subtended between the
outward unit normal vector n on a straight microcrack with the tensile (or compressive) stress (σ ) axis.
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where αso is the stress invariant angle of similarity (i.e., the third stress invariant), we
set αso = π/3 (Chen and Han, 1988) which means

F = 0 ⇔ T

(√
3

2
− 1

2
√

3
sin ϕm

)
− (q − p) sin ϕm = 0, (5.39)

with the mean normal stress defined as follows (compressive stresses assumed here
negative)

p = 1

3
(2σr + σz) ⇒ p = 1

3
(−σa). (5.40)

The friction coefficient is denoted by the symbol fc and is defined by the ratio

F = 0 ⇒ fc = T

q − p
. (5.41)

The mobilized internal friction angle φm and the mobilized cohesion cm for the
constant q MC-model read as follows

sin φm = 3 fc

2
√

3 + fc
, cm = q tan φm . (5.42)

4.3 Constitutive Elastoplastic Model of Serena Sandstone

Returning to the sandstone UC test, in the uniaxial compression case we have (assum-
ing compressive stresses as positive)

p = 1

3
σa, sa = 2

3
σa, sr = −1

3
σa (5.43)

and the incremental stress–strain relations (5.36) take the form

dσa = 2Gsdε
(el)
a +

(
Ks − 2

3 Gs

) (
dε

(el)
a + 2dε

(el)
r

)

−sa
Ḋc

1−Dc
− p Ḋs

1−Ds
,

0 = 2Gsdε
(el)
r +

(
Ks − 2

3 Gs

) (
dε

(el)
a + 2dε

(el)
r

)

−sr
Ḋc

1−Dc
− p Ḋs

1−Ds
.

(5.44)

The empirical relations of bulk and shear secant moduli of Serena sandstone are
derived from the unloading–reloading test data and the above relations (5.44) (Fig-
ure 5.10a). The two “enhancing” functions at hand may be approximated in first order
for every loop by the linear relations

Ds

(
ε
(pl)
a

)
= −41.5

(
ε
(el)
a − ε

(pl)
a

)
,

Dc

(
ε
(pl)
a

)
= −30

(
ε
(el)
a − ε

(pl)
a

)
.

(5.45)



86 G.E. Exadaktylos

20

0

0 0.5

Dc
Ds

Linear (Dc) y = −28.92x + 17.773
y = −43.635 + 33.421Linear (Ds)

1 1.5 2 2.5 3.5

Axial strain (x1e3)

SS-TC-0
2nd loop

3
−20

−40

−60

−80

−100

−120

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6

Axial plastic strain (x1e3)

SS-TC-0

Go [GPa]
Ko [GPa]
Expon. (Go [GPa]) y = 0.704e−2.0926x

y = 0.1849e−0.787xExpon. (Ko [GPa])

0.8 1 1.2

Fig. 5.10. (a) Dependence of damage scalar variables of sandstone on axial strain in the second loop, and
(b) best exponential fit dependence of initial elastic moduli of each unloading–reloading loop on the axial
plastic strain.

Then based on the above damage theory the moduli of sandstone were expressed as a
function of the damage or enhancing functions as follows

Ks = K0

(
ε
(pl)
a

) [
1 − Ds

(
ε
(pl)
a

) ]
,

Gs = G0

(
ε
(pl)
a

) [
1 − Dc

(
ε
(pl)
a

) ]
,

(5.46)

where the initial elastic moduli were found to be negative exponential functions of the
axial plastic strain (Figure 5.10b),

K0 = 0.185 e-0.787 ε
(pl)
a ,

G0 = 0.704 e-2.093 ε
(pl)
a .

(5.47)
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Fig. 5.11. Determination of the tension limit by best fitting a straight line on the uniaxial and triaxial
compression test data at failure in the (p, T ) stress space and UC stress path.

It is worth noticing that the above relations indicate that enhancement is linked or
coupled with the plasticity exhibited by the sandstone.

The tension limit q of this type of the sandstone is found by fitting a straight line
on the uniaxial and triaxial compression test data in the p-P space, as it is displayed in
Figure 5.11. We can evaluate at each point of the stress–strain curves the plastic strains
and plot the friction coefficient, the mobilized friction angle, and the mobilized cohe-
sion as a function of the plastic shear strain intensity. The latter quantity is calculated
as follows,

ġ = ġ(el) + ġ(pl) = Ṫ

G
+ ġ(pl) ⇒ ġ(pl) = ġ − Ṫ

G
. (5.48)

For the flow rule, by assuming coaxiality of stresses and strains, we employ a MC
expression of the form

Q = T

(√
3

2
− 1

2
√

3
sin ψm

)
+ p sin ψm = 0. (5.49)

Hence, the mobilized dilatancy angle ψm is calculated from the following relationship,

sin ψm = 3d

2
√

3 + d
. (5.50)

An algorithm has been constructed based on the set of equations (5.44)–(5.47) de-
scribing the elasticity of the rock, as well as the set of equations (5.7)–(5.14), (5.17),
(5.18), (5.38)–(5.42) and (5.48)–(5.50) describing its plastic behavior, in order to cal-
culate the dependence of basic mechanical parameters on the amount of plastic shear
strain intensity that is used as a load parameter. Figure 5.12 displays the dilation re-
sponse, whereas Figure 5.13 shows the typical variation of the mobilized friction and
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Fig. 5.12. Dilation response of Serena sandstone specimen SS-TC-0 in UC.
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Fig. 5.13. Plots of mobilized friction and dilatancy angles, axial stress, and mobilized cohesion of Serena
sandstone specimen SS-TC-0 in UC. The convention of compression positive is assumed.

dilatancy angles, cohesion, and axial stress as functions of the plastic shear strain in-
tensity for the Serena sandstone, that are predicted by the assumed elastoplastic model.
From the latter plot it may be seen that after some plasticity is developed in the spec-
imen, the mobilized friction and dilatancy angles coincide, indicating an associated
flow rule. Also, as was expected, the peak cohesion and peak internal friction angle
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predicted by this model are in good agreement with the respective values of these
strength properties derived from the linear MC failure envelope (e.g., Figure 5.6a.)

The predictability of the general model proposed above may be validated in a further
step against additional test data (e.g., from the triaxial tests and tension tests or others).
This validation procedure will reveal the weaknesses of the model that must be further
elaborated in an iterative manner, until we obtain its most general applicability.

5. Summary and Conclusions

Carefully designed simple rock mechanics experiments performed on sandstone re-
vealed their nonlinearity both in the elastic and plastic regimes. This necessitated the
formulation of a nonlinear theory based on elasticity, damage mechanics, and plasticity
theories. In a subsequent stage this theory was calibrated applying triaxial compression
tests on Serena sandstone. Future work will include validation of the proposed model
against more element or structural tests in the tensile and compressive regimes on the
same type of stone. The hysteresis displayed by the sandstone was not considered in
this first attempt. This is a topic of major interest that may be attacked by virtue of
the theory of fracture mechanics in the near future. Fracture mechanics may also be
used as a powerful tool to describe (a) the brittleness displayed by the rocks (i.e., their
approximate tenfold decrease in compressive strength properties when they are sub-
jected to tensile loads), and (b) the size effect that is manifested by the considerable
reduction of their strength with the increase of the size of the structure. That is to say,
modern rock mechanics should rely upon all the up-to-date developments of the funda-
mental theories of elasticity, strength of materials, damage mechanics, plasticity, and
fracture mechanics in order to present robust models for rocks subjected to static or to
dynamic loads. The linking of all these theories under the umbrella of a unique theory
capable of describing the rock mechanical behavior at all scales (i.e., in the range 1e-6
m—1e 4 m) and boundary conditions encountered in praxis, is one of the fascinating
challenges of the future.

Acknowledgments

This work is a result of research supported by funds of the MCDUR Project (G6RD-
CT-2000-00266) and DIAS Project (DIAS-EVK4-CT-2002-00080) of the European
Union.

References

Chen, W.F. and Han, D.J., 1988, Plasticity for Structural Engineers. Springer-Verlag, New York.
Frederick, D. and Chang, T.S., 1972, Continuum Mechanics, Scientific, Cambridge.
Guyer, R. and Johnson, P., 1999, Nonlinear mesoscopic elasticity: Evidence for a new class of materials,

Phys. Today, 30–36.
Hill, R., 1950, The Mathematical Theory of Plasticity, Clarendon Press, Oxford.
Jaeger, J.C. and Cook, N.G.W., 1976, Fundamentals of Rock Mechanics, Chapman and Hall, London.



90 G.E. Exadaktylos

Johnson, P.A., 2005, Nonequilibrium non-linear dynamics in solids: State ofthe art in methods and appli-
cations, this volume.

Kachanov, L.M., 1974, Fundamentals of the Theory of Plasticity, MIR, Moscow.
Lemaitre, J., 1992, A Course on Damage Mechanics Springer-Verlag, Berlin.
Truesdell, C. and Noll, W., 1965, The Non-Linear Field Theories of Mechanics, Springer-Verlag, Berlin.
Vardoulakis, I. and Sulem, J., 1995, Bifurcation Analysis in Geomechanics, Blackie Academic & Profes-

sional, Berlin.

Vardoulakis, I., Kourkoulis, S.K. and Exadaktylos, G.E., 1998, Elasticity of marble, In Recent Advances in

Mechanics, Kounadis A.N. & Gdoutos E.E. eds., Xanthi, Greece, July 10-12.

View publication stats

https://www.researchgate.net/publication/226007510

